Problem 2.24

For the charge configuration of Prob. 2.16, find the potential at the center, using infinity as your reference point.

Solution

An electrostatic field must satisfy $\nabla \times \mathbf{E}=\mathbf{0}$, which implies the existence of a potential function $-V$ that satisfies

$$
\mathbf{E}=\nabla(-V)=-\nabla V .
$$

The minus sign is arbitrary mathematically, but physically it indicates that a positive charge in an electric field moves from high-potential regions to low-potential regions (and vice-versa for a negative charge). To solve for V, integrate both sides along a path between two points in space with position vectors, a and \mathbf{b}, and use the fundamental theorem for gradients.

$$
\begin{aligned}
\int_{\mathbf{a}}^{\mathbf{b}} \mathbf{E} \cdot d \mathbf{l}_{0} & =-\int_{\mathbf{a}}^{\mathbf{b}} \nabla V \cdot d \mathbf{l}_{0} \\
& =-[V(\mathbf{b})-V(\mathbf{a})] \\
& =V(\mathbf{a})-V(\mathbf{b})
\end{aligned}
$$

In this context \mathbf{a} is the position vector for the reference point (taken to be infinity ∞ here), and \mathbf{b} is the position vector \mathbf{r} for the point we're interested in knowing the electric potential.

$$
\int_{\infty}^{\mathbf{r}} \mathbf{E} \cdot d \mathbf{l}_{0}=V(\infty)-V(\mathbf{r})
$$

The potential at the reference point is taken to be zero: $V(\infty)=0$.

$$
\int_{\infty}^{\mathbf{r}} \mathbf{E} \cdot d \mathbf{l}_{0}=-V(\mathbf{r})
$$

Therefore, the potential at $\mathbf{r}=\langle x, y, z\rangle$ is

$$
V(\mathbf{r})=\int_{\mathbf{r}}^{\infty} \mathbf{E} \cdot d \mathbf{l}_{0}
$$

According to Problem 2.16, the electric field around a thick spherical shell with charge density $\rho=k / r^{2}$ for $a \leq r \leq b$ is

$$
\mathbf{E}=\left\{\begin{array}{ll}
\mathbf{0} & \text { if } r<a \\
\frac{k}{\epsilon_{0}}\left(\frac{r-a}{r^{2}}\right) \hat{\mathbf{r}} & \text { if } a<r<b . \\
\frac{k}{\epsilon_{0}}\left(\frac{b-a}{r^{2}}\right) \hat{\mathbf{r}} & \text { if } r>b
\end{array} .\right.
$$

Since the electric field is spherically symmetric, the path taken from \mathbf{r} to ∞ is a radial one and parameterized by r_{0}, where $r \leq r_{0}<\infty$.

$$
V(r)=\int_{r}^{\infty} \mathbf{E}\left(r_{0}\right) \cdot d \mathbf{r}_{0}
$$

Evaluate the dot product, substitute the formula for the electric field, evaluate the integrals, and simplify the result.

$$
\begin{aligned}
& V(r)=\int_{r}^{\infty}\left[E\left(r_{0}\right) \hat{\mathbf{r}}_{0}\right] \cdot\left(\hat{\mathbf{r}}_{0} d r_{0}\right) \\
& =\int_{r}^{\infty} E\left(r_{0}\right) d r_{0} \\
& \iint_{r}^{a}(0) d r_{0}+\int_{a}^{b} \frac{k}{\epsilon_{0}}\left(\frac{r_{0}-a}{r_{0}^{2}}\right) d r_{0}+\int_{b}^{\infty} \frac{k}{\epsilon_{0}}\left(\frac{b-a}{r_{0}^{2}}\right) d r_{0} \quad \text { if } r<a \\
& = \begin{cases}\int_{r}^{b} \frac{k}{\epsilon_{0}}\left(\frac{r_{0}-a}{r_{0}^{2}}\right) d r_{0}+\int_{b}^{\infty} \frac{k}{\epsilon_{0}}\left(\frac{b-a}{r_{0}^{2}}\right) d r_{0} & \text { if } a<r<b\end{cases} \\
& \left(\int_{r}^{\infty} \frac{k}{\epsilon_{0}}\left(\frac{b-a}{r_{0}^{2}}\right) d r_{0}\right. \\
& = \begin{cases}\frac{k}{\epsilon_{0}}\left(\int_{a}^{b} \frac{d r_{0}}{r_{0}}-a \int_{a}^{b} \frac{d r_{0}}{r_{0}^{2}}\right)+\frac{k}{\epsilon_{0}}(b-a) \int_{b}^{\infty} \frac{d r_{0}}{r_{0}^{2}} & \text { if } r<a \\
\frac{k}{\epsilon_{0}}\left(\int_{r}^{b} \frac{d r_{0}}{r_{0}}-a \int_{r}^{b} \frac{d r_{0}}{r_{0}^{2}}\right)+\frac{k}{\epsilon_{0}}(b-a) \int_{b}^{\infty} \frac{d r_{0}}{r_{0}^{2}} & \text { if } a<r<b \\
\frac{k}{\epsilon_{0}}(b-a) \int_{r}^{\infty} \frac{d r_{0}}{r_{0}^{2}} & \text { if } r>b\end{cases} \\
& = \begin{cases}\frac{k}{\epsilon_{0}}\left[\left.\ln r_{0}\right|_{a} ^{b}-\left.a\left(-\frac{1}{r_{0}}\right)\right|_{a} ^{b}\right]+\left.\frac{k}{\epsilon_{0}}(b-a)\left(-\frac{1}{r_{0}}\right)\right|_{b} ^{\infty} & \text { if } r<a \\
\frac{k}{\epsilon_{0}}\left[\left.\ln r_{0}\right|_{r} ^{b}-\left.a\left(-\frac{1}{r_{0}}\right)\right|_{r} ^{b}\right]+\left.\frac{k}{\epsilon_{0}}(b-a)\left(-\frac{1}{r_{0}}\right)\right|_{b} ^{\infty} & \text { if } a<r<b \\
\left.\frac{k}{\epsilon_{0}}(b-a)\left(-\frac{1}{r_{0}}\right)\right|_{r} ^{\infty} & \text { if } r>b\end{cases} \\
& = \begin{cases}\frac{k}{\epsilon_{0}}\left[(\ln b-\ln a)-a\left(-\frac{1}{b}+\frac{1}{a}\right)\right]+\frac{k}{\epsilon_{0}}(b-a)\left(\frac{1}{b}\right) & \text { if } r<a \\
\frac{k}{\epsilon_{0}}\left[(\ln b-\ln r)-a\left(-\frac{1}{b}+\frac{1}{r}\right)\right]+\frac{k}{\epsilon_{0}}(b-a)\left(\frac{1}{b}\right) & \text { if } a<r<b \\
\frac{k}{\epsilon_{0}}(b-a)\left(\frac{1}{r}\right) & \text { if } r>b\end{cases}
\end{aligned}
$$

Therefore,

$$
V(r)= \begin{cases}\frac{k}{\epsilon_{0}}\left(\ln \frac{b}{a}\right) & \text { if } r<a \\ \frac{k}{\epsilon_{0}}\left(\ln \frac{b}{r}+1-\frac{a}{r}\right) & \text { if } a<r<b . \\ \frac{k}{\epsilon_{0}}\left(\frac{b-a}{r}\right) & \text { if } r>b\end{cases}
$$

Below is a plot of $\left(\epsilon_{0} / k\right) V(r)$ versus r.

The electric potential at the center of the spherical shell is

$$
V(0)=\frac{k}{\epsilon_{0}}\left(\ln \frac{b}{a}\right) .
$$

